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ABSTRACT

1,1'-Spirobis(3H-2, I-benzoxatellurole) -3, 3'-dione
[10-Te-4(C202)] (1¢c) with five-membered spirorings
was prepared, and its molecular structure was deter-
mined by X-rav crystallographic analysis. The two
types of arrangement of the ligands about the central
tellurium atom show considerably distorted trigonal
bipvramidal (TBP) geometries. The tellurane 1c un-
dergoes a ring-opening reaction on treatment with
aqueous sodium hydroxide to afford the telluroxide 10,
which reacts with aqueous hydrochloric acid ar room
temperature to give again the tellurane 1c¢ in quanti-
tative vield. © 1995 John Wiley & Sons, Inc.

INTRODUCTION

Organic hypervalent compounds of chalcogens have
received considerable attention in the past two de-
cades [1-3]. In particular, the synthesis and prop-
erties of various spirosulfuranes and spirosele-
nanes have been extensively reported [4]. However,
much less is known about the chemistry of spiro-
telluranes. Furthermore, while several dialkoxy-
spirotelluranes [10-Te-4(C202)] have been pre-
pared [5], preparation of a diacyloxyspirotellurane
has never been reported. This article describes the
first isolation of the diphenyldiacyloxyspirotellur-
ane lc and its structural determination by X-ray
crystallographic analysis.
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RESULTS AND DISCUSSION

The title compound 1¢ was synthesized, as shown
in Scheme 1. The structure of 1¢ was confirmed by
'H, P*C, and '"®Te NMR spectroscopy, mass spec-
troscopy, and elemental analysis. Particularly, the
'>Te spectroscopy is a diagnostic method to esti-
mate the structure of tellurium compounds. The
'2Te NMR shift of spirotellurane ¢ appears at 951
ppm (CDCl;) and 1021 ppm (CD;0D), similar to the
shifts of dialkoxyspirotelluranes (4), (5), and (6)
(1196 ppm in C¢H,, 1051 and 1190 ppm in CDCls)
[5]. On the other hand, the mass spectrum of 1¢
shows clearly the parent peak at m/z 370 (M",
1.30%) together with m/z 326 (M* — 44, 14.0%).
The structure of the compound 1c was finally
determined by X-ray crystallographic analysis [6].
The molecular structure of spirotellurane ic, sim-
ilarly to other telluranes [5,7], exhibits a consid-
erably distorted trigonal bipyramidal (TBP) ge-
ometry about the central tellurium atom, where the
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STRUCTURAL FORMULA 1

more electronegative acyloxy ligands are in the
apical positions with the two aryl carbons and the
lone electron pair in the equatorial ones. The tel-
lurane 1c was found to be composed of two nearly
identical crystals. The ORTEP drawing of lc¢ is
shown in Figure 1. The apical Te(1)-0(1), Te(1)-
0(3), Te(2)-0(1"), and Te(2)-0(3") bond distances
are 2.106(7), 2.137(6), 2.112(7), and 2.129(7) A,
whereas the equatorial Te(1)-C(11), Te(1)-C(21),
Te(2)-C(11'), and Te(2)-C(21') bond lengths are
2.10(1), 2.10(1), 2.09(1), and 2.096(9) A, respec-
tively. The apical Te-O distances related to hy-
pervalent bonds were found to be slightly longer
than the sum of the tellurium and oxygen covalent
radii (2.10 A). Bond angles O(1)-Te(1)-0(3), O(1')-
Te(2)-0(3"), O(1)-Te(1)-C(11), C(1)-Te(1)-C(21),
0O(3)-Te(1)-C(11), O(3)-Te(1)-C(21), O(1")-Te(2)-
C(117), O(1")-Te(2)-C(21"), O(3")-Te(2)-C(11"), O(3")—
Te(2)—C(217), C(11)-Te(1)-C(21), and C(11")-Te(2)-
C(21') are 161.3(3), 158.4(3), 79.3(4), 87.3(3), 88.6(3),
79.4(3), 79.6(3), 85.5(3), 87.3(3), 78.8(3), 94.2(4), and
95.6(4)°, indicating that lc is a considerably dis-
torted TBP structure that is nearly identical with
that of tetraphenyltellurane (7) as reported by Smith
et al. [8].

FIGURE 1 ORTEP drawing of 1c.

STRUCTURAL FORMULA 2

The butterfly-like molecule of the symmetrical
spirotellurane 1¢ retains its C2 molecular sym-
metry in the crystal structures formed equally with
the space group P2SC/n (No. 14). Due to the dis-
torted TBP geometry, all of the O-Te—C bond an-
gles in 1c are nearly 90°, and the O—Te—O moieties
are approximately linear. In most cases, the Te-0O
bonds are slightly bent toward the aromatic rings
(the endocyclic O-Te-C bond angles are usually
somewhat smaller than 90°). The five-membered
rings in spirotellurane 1c¢ are almost coplanar,
within experimental error, having endocyclic tor-
sional angles (¢) smaller than 8°. The aromatic rings
are nearly perpendicular to the equatorial plane,
as shown by the C-Te-C-C torsional angles of 77—
103°. The fusion of the planar spirorings with the
benzene rings does not cause any steric strain.

Since the spirochalcogenuranes la—c can be
classified as [10-X-4(C202)] (X=8, Se, Te) species,
they seem to be appropriate models for studying
the efficiency of the central atom effect by com-
paring their molecular structures and resistance to
hydrolysis. By X-ray structure determination, we
can compare the geometric parameters about the
chalcogen characteristic of the molecular struc-
tures of diaryldiacyloxychalcogenuranes and ex-
plain how the central atom of the spirorings influ-
ence these parameters. Selected bond lengths and
bond angles that are characteristic of the spiro-
chalcogenuranes la—c are listed in Table 1.

The structural data of spirosulfurane (1a) and
-selenane (1b) can be well interpreted on the basis
of Musher’s theory assuming hypervalent three-
center four-electron bonds in the axial array. It must
be noted that an apical O-X-0 angle of 1¢ is about
20° smaller than that of spirosulfurane la. The
gradual increase of O-X-0 distances in the spi-
rochalcogenuranes la—c¢ is accompanied by a sim-
ilar decrease of 0-X-0O bond angles and X—C bond
lengths.

Thus, it may be concluded that the structural
parameters about the chalcogen in spirochalco-
genuranes [10-X-4(C202)] (X=S, Se, Te) with ar-
omatic carbon and acyloxy-oxygen are not close to
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TABLE 1 Selected Bond Distances and Angles for Spi-
rosulfurane 1a, Spiroselenane 1b, and Spirotellurane 1c

Spirochalcogenuranes

1a 1b 1c
Bond distances (A)
X-0, 1.842(3)  1.968(7) 2.106(7)
X-0y 1.842(3) 2.137(6)
X-C, 1.794(5)  1.930(7) 2.10(1)
X-Ce 1.794(5) 2.10(1)
0.-C, 1.320(9) 1.329(12)  1.35(1)
0.~C, 1.192(8)  1.198(10)  1.23(1)
C—Cq 1.46(3) 1.488(11)  1.46(2)
Bond angles (°)
0.-X-0, 177.7(4)  172.4(3) 161.3(3)
0.-X~C, 91.3(4) 91.4(3) 79.3(4)
0,—X-C. 87.3(3)
0,-X-C, 88.6(3)
0,-X-C. 91.3(4)  83.8(3) 79.4(3)
C.—X-C, 106.9(4)  101.0(3) 94.2(4)
X-0,-C, 115.2(7)  115.4(5) 114.8(7)
0,~-C,—Cqy 111(1) 112.1(7) 114.8(9)
oc—cb—cd 125.4(8) 125(1)

one another and are considerably influenced by the
central atom.

Compound ¢ was quite stable to water and did
not form the corresponding telluroxide, even on
heating, which is in marked contrast to the behav-
ior of the sulfur analog (1a). This result indicates
that the equilibrium lies very far to the left, in
analogy with dialkoxyspirosulfuranes (Scheme 2)
[9]. On the other hand, the acyclic diaryldiacylox-
ytellurane (8) was hydrolyzed in dioxane-water to
give diphenyl telluroxide (9) and acetic acid
(Scheme 3). The ring effect of spirotellurane 1c well
accounts for such a decrease in reactivity. How-
ever, in the case of spirotellurane 1c¢, on treatment
with aqueous sodium hydroxide, the formation of
telluroxide (10) was detected by '*Te, 'H, and *C
NMR spectroscopy. Interestingly, telluroxide 10
returns to 1¢ by neutralization with aqueous hy-
drochloric acid (Scheme 4). Therefore, the stability
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4(C202)] (X=S8, Se, Te) is identical with that of tet-
raphenylchalcogenuranes.

EXPERIMENTAL

1,1’-Spirobis(3H-2,1-benzoxatellurole)-3,3' -dione
{1c). A solution of sodium nitrite (4.70 g, 61.8
mmol) in water (20 mL) was added dropwise to a
white suspension of anthranilic acid (2) (8.23 g, 60.0
mmol) in water (40 mL) and concentrated hydro-
chloric acid (40 mL) at 0—5°C. After 1 hour, the yel-
low reaction mixture was allowed to react with so-
dium telluride, which was prepared by treatment
of tellurium (3.83 g, 30.0 mmol) with sodium hy-
droxide (21.4 g, 534 mmol) and rongalite (274 g,
178 mmol) in water (100 mL) at 80°C. The whole
mixture was stirred at 80°C for 30 min. The yellow
products were precipitated with acid and sepa-
rated from the solution by filtration. The crude
products were purified by silica-gel column chro-
matography (methanol/chloroform 1:8) and re-
crystallized from methanol to give white crystal-
line (1c) (3.22 g, 8.76 mmol, 14.6%), mp 286-287°C;
'"H NMR (CD,0OD) & 7.71 (t, J = 7.3 Hz, 2H), 7.86
(t, J = 7.3 Hz, 2H), 794 (d, J = 7.3 Hz, 2H), 8.08
(d,J = 7.3 Hg, ZH); '3C NMR (CD;0D) 6 131.8, 132.6,
134.3, 1344, 137.0, 139.1, 174.6; '**Te NMR (CD;0D)
5 1021 (relative to Me,Te); MS, m/z 370 (M*). Anal.
calced for C,,Hz0,Te: C; 45.72, H; 2.19%. Found: C,
45.55; H, 2.25%.

Although it has been reported that bis(2-car-
boxyphenyl)telluride (3) can be obtained by react-
ing potassium telluride with diazotized anthran-
ilic acid [10], we could not obtain 3. Probably, 3
was oxidized during the workup procedure by ae-
rial oxygen to give the telluroxide that undergoes
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dehydration resulting in the formation of 1, as
shown in Scheme 2.

Hydrolysis of Acyclic Diaryldiacyloxytellurane
(8). A solution of tellurane 8 (31.0 mg, 0.114 mmol)
in 15 mL of dioxane-water (9:1 v/v) was heated at
80°C for 5 hours. Telluroxide (9), which was iden-
tified as to its structure by comparing 'H, '°C, '*’Te
nmr spectra with those of an authentic sample,
could be obtained together with acetic acid in
guantitative yield.

Formation of Bis(2-carboxyphenyl)telluroxide,
Sodium Salt (10). A solution of sodium hydroxide
(100 mg) in D,0O (0.50 mL) was added to spirotel-
lurane 1¢ (20 mg, 0.054 mmol). Telluroxide 10 was
detected by its '"H NMR (D,0) spectrum, §, 7.51—
7.54 (m, 2H), 7.59-7.66 (m, 4H), 8.10-8.13 (m, 2H);
3C NMR (D,0) 6 132.5, 132.6, 133.3, 135.2, 138.8,
143.1, 176.1; '**Te NMR (D,0) & 1258 (relative to
Me,Te). This solution was neutralized with aqueous
hydrochloric acid, and white precipitates were
separated from the solution by filtration to give
again the tellurane 1c¢ in quantitative yield.
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